MAUI SMART GRID PROJECT

Hawaii Natural Energy Institute

University of Hawaii at Manoa

Maui Electric Company, Ltd.

Hawaiian Electric Company

GE Global Research

United States - India - China - Gen

Sentech, Inc.

Presentation Overview

Discuss objectives and project site

Describe system and technologies deployed

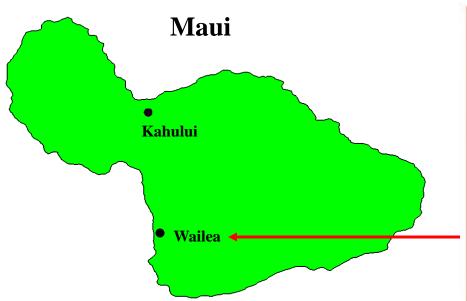
Illustrate project architecture

Review schedule and progress to date

Maui Smart Grid Project Objectives Distributed Resources for Transmission-level Support

- Reduce distribution circuit peak loading by >15%
 - By demand response, switching peak loads to energy storage, and reducing voltage
- Improve service quality
 - By using Integrated volt/var control, outage management
- Enable consumers to manage their energy use to minimize electric bills
 - By using customer portals and advanced home energy gateways for a few homes
- Support grid stability
 - Controllable loads, storage, and improved voltage/current information will improve grid stability
- Enable greater utilization of as-available renewable energy sources
 - By providing measurement and estimation of distributed PV to the utility operator

MAUI SMART GRID PROJECT Technical Challenges

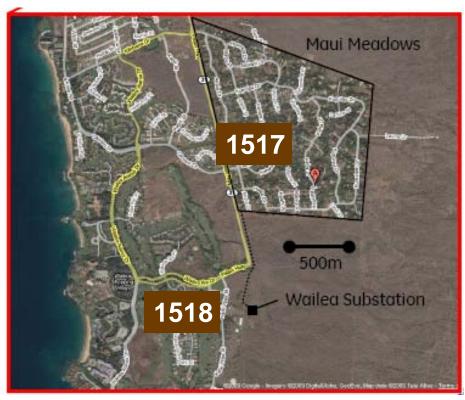

Develop a general Smart Grid architecture that:

Incorporates legacy equipment (with proprietary protocols)

Avoids overwhelming or reducing control capabilities of the system dispatcher

Integrates system components with secure communications systems

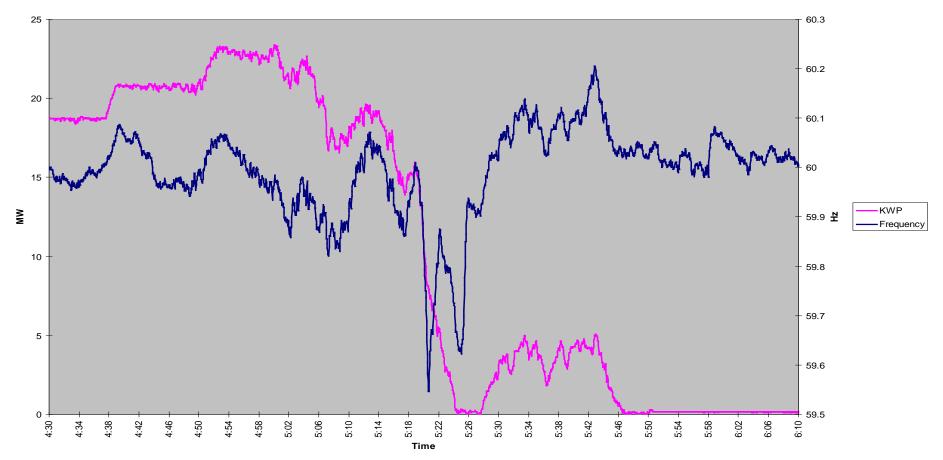
Project Located in Wailea Area


MECO system peak load ≈ 200MW

Fossil fuel and biofuel capacity = about 250 MW

Kaheawa Wind plant = 30 MW

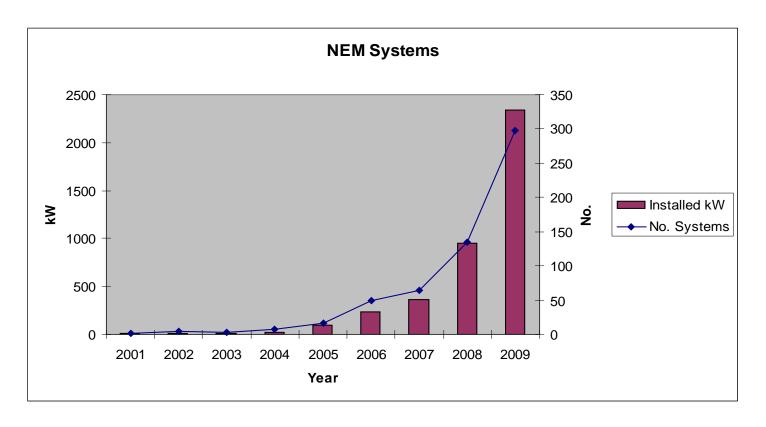
Up to 90 MW of proposed renewables


Project will use 2 circuits @ Wailea Sub. viz. circuits 1517 and 1518

Maui Meadows ≈ 500 homes

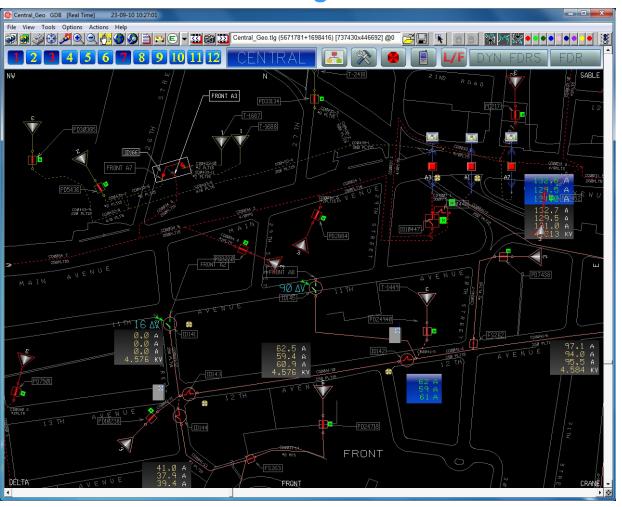
Other circuit with resorts and commercial

Wind Power Adds Variability to MECO Generation System


MECO Frequency & KWP MW Output - Feb. 29, 2008

Small frequency bias means a single as-available generation facility can impact the system frequency

Distributed PV Generation Adding Variability to MECO Load



Increasing number of small as-available generation facilities without SCADA

GENe Distribution Management System (DMS)

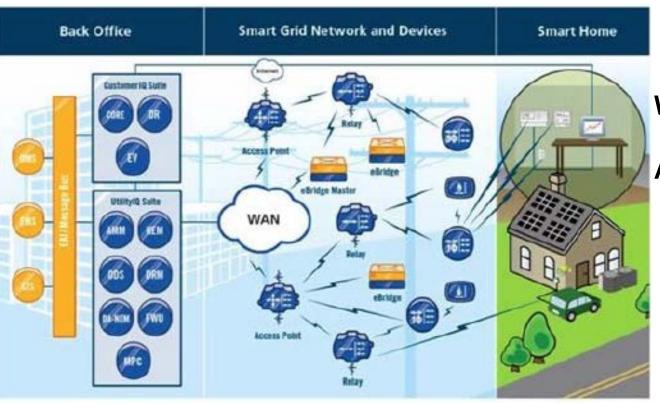
Centralized data management and control of distribution system assets

Visualize distribution system data

Dynamic load flow model

Volt/VAR optimization

Developing decision support "dashboard"


GE is supplying and developing product

Offering MECO operations the ability to look within their distribution Hawaii Natural Energy Institute system will provide benefits.

School of Ocean and Earth Science and Technology University of Hawaii at Manoa

Advanced Metering Infrastructure (AMI)

Providing two-way communications to distribution system assets

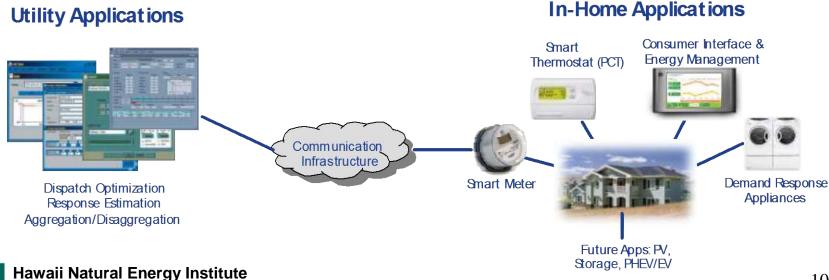
Wireless mesh network

AMI supports:

- voltage monitoring
- demand response
- PV monitoring

Silver Spring Networks is technology provider for this system

Demand Response Management System (DRMS)


Manage load during system events and peak load

1. Load reduction during peak periods

Contribute to 15% peak load reduction on circuit 1517

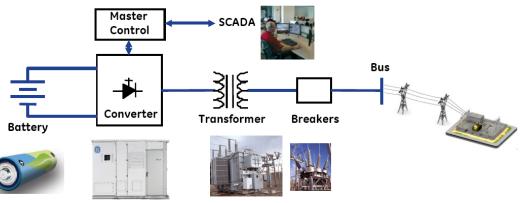
2. Increase energy consumption during off-peak hours

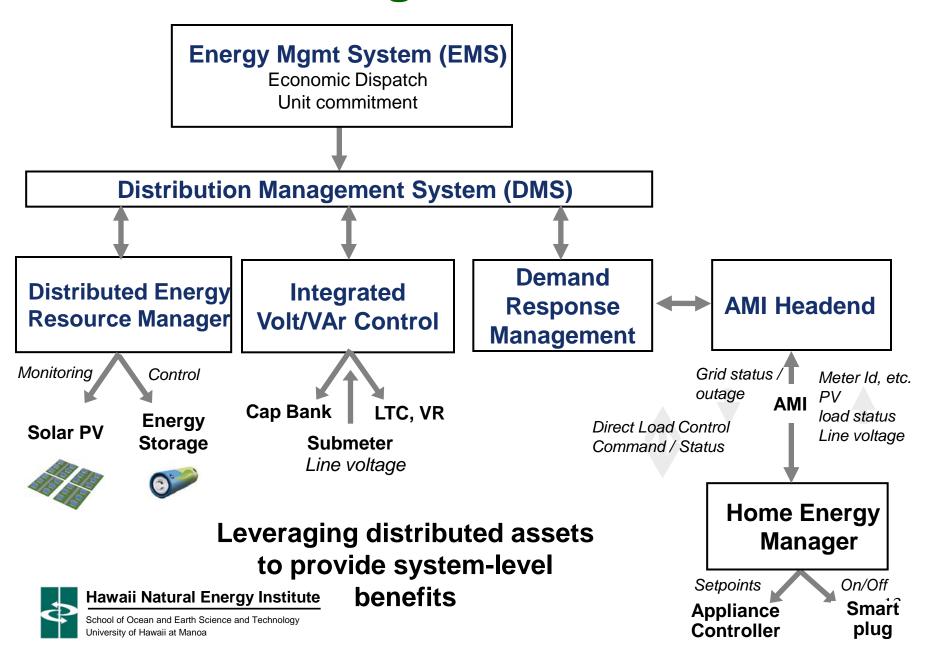
- Increase energy production from lowest cost generation by reducing peak load and the need to start peaking units
- Flatten and extend peak load to reduce wind plant curtailment.

Home Energy Management System (HEMS)

Residential consumer portal

- Monitor electricity usage & solar PV production
- Programmable thermostat, load control switches, and "Gateway"
- Demand response enabled comms for smart appliances
- Communications: Supports Ethernet, WiFi, Zigbee SEP 1.0
- Interface: In-home display or web interface




Battery Energy Storage System (BESS)

Multiple Benefits

- 1. Manage peak load → Discharge for 1-2hr during peak
- 2. Voltage regulation → Manage variability caused by load and PV
- 3. Renewables Integration
 - Non-spinning reserve → Rapidly inject power, and bridge to fast-start generation.
 - Reduce wind curtailment → Charge off peak during excess energy periods

Demonstrating New DMS Functions

Maui Smart Grid Project Objectives Distributed Resources for Transmission-level Support

	DMS	AMI, DRMS, HEMS, and Monitoring	BESS	
Reduce peak load	Aggregate DER and provide dashboard controlVolt/VAR control	Enable direct load control TOU prices (in future)	Discharge energy to reduce load	
Improve service quality	Provide visibility to operatorImproved outage mgmtVolt/VAR optimization	Voltage monitoring validates DMS load flow	Can help manage voltage	
Inform consumer decisions		Communicate pricesReal-time displayEnergy mgmt system		
Grid stability	Visibility on PV output Aggregate DER and provide dashboard control	Real-time monitoring of PVEnable load control	Discharge energy during system events	
Increase RE utilization	Provide reserve support (potentially reduce reserves)	Load shifting	Charge during off- peak	

Project Timeline

	Budget Period 1		Budget Period 2		Budget Period 3			
	2009	2010		2011		2012		2013
	Q1, Q2 Q3, Q4	Q1, Q2	Q3, Q4	Q1, Q2	Q3, Q4	Q1, Q2	Q3, Q4	Q1
DMS								
AMI, DRMS, HEMS, and Sensors	Develop Functional Spec	Detailed design, Technology selection		Development, Testing, Outreach	Deploy on Maui	System Operation and Data Collection		a
BESS		RFP, Select vendor		Design and Build				

Maui Smart Grid Project Benefits

DOE

- Demonstrate distribution management system for microgrids
- Develop general architecture integrating multiple Smart Grid functions

State of Hawaii

- Reduce petroleum use and emissions
- More renewable energy

MECO

- Improve grid stability
- Reduce use of petroleum and emissions
- Better power quality
- Incorporate more as-available renewable energy
- Integrate generation dispatch, IPP, demand response, AMI, distribution management, outage response functions

IPP

Sell more energy

Customer

- Improved service quality (voltage management)
 More options for customers to lower their energy bills

Mahalo! Questions?

Hawaii Natural Energy Institute

University of Hawaii at Manoa

Maui Electric Company, Ltd.

Hawaiian Electric Company

GE Global Research

United States - India - China - Geri

Sentech, Inc.

